1. <b id="x0hdm"></b>
  • <sup id="x0hdm"></sup>

    1. frequency characteristic

      基本解釋頻次特征

      網絡釋義

      1)frequency characteristic,頻次特征2)the frequency of the competence,勝任特征頻次3)higher order frequency coupling feature,高次頻率耦合特征4)sub-eigenvalue,次特征值5)layer feature,層次特征6)sub-characteristic value,次特征值

      用法和例句

      For extracting higher order frequency coupling feature radiated by actual nonlinear vibration system via odd-order cumulants(OOC),quartic frequency coupling and quadratic-to-cubic frequency coupling were firstly defined,OOC features analyzed,the relation between OOC calculation method and its computational load was studied.

      為了用奇數階累積量提取非線性振動系統的高次頻率耦合特征,定義了四次頻率耦合、二三對頻率耦合等高次耦合新概念,分析了奇數階累積量特征,研究了奇數階累積量計算方法與計算量間的關系,提出了奇數階累積量計算優化算法,該算法將奇數階累積量的直接估計變為遞推估計,將奇數階累積量的多維運算轉化為一維運算,大幅度減小了計算量,在工程上具有可實現性。

      The paper has discussed such problims as the properties of sub-eigenvalue and sub-eigenvector of real-anti-sub-symmetric matrix,and its diagonalization.

      討論了實反次對稱矩陣的次特征值與次特征向量的性質及實反次對稱矩陣的對角化問題。

      An algorithm to recognize unconstrained handwritten numerals based on centroid layer feature is proposed in this paper.

      采用了基于字符質心的層次特征對無約束手寫體數字進行分類識別。

      Some main properties of sub-characteristic value of general real matrix are given,and sub-characteristic value of(anti) asymmetric matrix,(anti) sub-symmetric matrix,sub-orthogonal matrix,involutary matrix and idempotent matrix is studied.

      給出了一般實方陣次特征值的一些主要性質,并對(反)對稱陣、(反)次對稱陣、次正交矩陣,以及對合矩陣與冪等矩陣的次特征值的取值情況進行了研究,得到了一些新結果。

      This paper includes theorems such as the one that the real parts of the sub-characteristic values belonged to an n-square metapositive definite complex matrix are positive,and that if JA is a normal composite matrix,then A is a metapositive definite complex matrix if and only if the real part of the sub-characteristic value belonged to A is real.

      研究了復矩陣的次正定性的性質和一系列充分必要條件,得到了“n階次正定復矩陣的次特征值實部為正”與“當JA為復正規矩陣時,A是次正定復矩陣的充分必要條件是A的次特征值實部為正”等結論;討論并給出了矩陣乘積是次正定復矩陣的充分和充要條件;得到了與著名的Ostrowski-Taussky不等式、Hadamard不等式、Oppenhein不等式等相應的重要結果。

      It was proved that the real parts of the sub-characteristic values of an n-order metapositive semi-definite matrix are positive and,when JA is a normal real matrix,then A is a metapositive semi-definite matrix if and only if the real part of the sub-characteristic value of A is real.

      研究了次亞正定矩陣的性質和一系列充分必要條件,主要得到了2 個結論:(1) n階次亞正定矩陣的次特征值實部為正;(2) 當JA為實正規矩陣時,A是次亞正定矩陣的充分必要條件是A 的次特征值實部為正。

      The Differentiability of Characteristic Value and Characteristic Vector in Quadratic Characteristic Value Problem

      次特征值問題中特征值和特征向量的可微性

      Spectral Inclusion Regions of Partitioned Matrices and Inclusion Regions of Inhomogeneous Eigenvalue;

      分塊矩陣特征值包含域和非齊次特征值包含域

      CALCULATION OF THE FIRST AND SECOND ORDER PARTIAL DERIVATIVES OF EIGENPAIRS OF QUADRATIC EIGENVALUE PROBLEMS

      次特征值問題特征對的一階與二階偏導數

      Numerical Approaches to Robust Partial Quadratic Eigenvalue Assignment Problems

      魯棒部分二次特征值配置問題的數值方法

      Structured Quadratic Inverse Eigenvalue Problems from the Second-order RLC Circuit Designing

      二階RLC電路設計中的結構化二次特征值反問題

      Solving Method for Structured Quadratic Inverse Eigenvalue Problem

      帶結構的二次特征值反問題的求解方法

      A direct projection method with refined vector for quadratic eigenvalue problems

      求解二次特征值問題的添加精化向量的直接法

      Symmetric and Skew Anti-symmetric Solution of Inverse Quadratic Eigenvalue Problem and Its Optimal Approximation

      次特征值反問題的對稱次反對稱解及其最佳逼近

      A refined second-order Arnoldi method;

      求解大型稀疏二次特征值問題的精化的二階Arnoldi方法

      Dirichlet eigenvalue estimates for p-sub-Laplacian in the Heisenberg group;

      Heisenberg群上p-次Laplace算子的Dirichlet特征值估計

      The Analysis of Anisotropic Property of Quadratic Triangular Element;

      三角形二次元插值的各向異性特征分析

      Study on a Class of Inverting Higher Degree Adjoint Matrix and Eigenvalues;

      一類逆高次伴隨矩陣及其特征值的研究

      The Characteristic Values and the Standard Form of a Quadratic Form Represented with a Real Symmetrical Determinant;

      實對稱行列式表示的二次型的特征值與標準形

      Study on existence of eigenvalue for sub-laplacian on Heisenberg group

      Heisenberg群上的次拉普拉斯算子特征值存在性證明

      The numerical simulative analysis on characteristic of boundary layer in MCS on 5 July,2004

      一次東北冷渦MCS邊界層特征數值模擬分析

      Lloyd's numeral

      勞氏特征數特征的數值)

      The roots ?? of the characteristic equations are known as eigenvalues, or Characteristic Values.

      特征方程之根??稱為本征值或特征值。

      Research on Sturm-Liouville Eigenvalue Problems

      Sturm-Liouville特征值問題

      最新行業英語

      行業英語

      又大又粗又硬又爽又黄毛片_插B内射18免费视频_黄色网站在线视频_国产真人一级毛片在线视频
      1. <b id="x0hdm"></b>
    2. <sup id="x0hdm"></sup>