1. <b id="x0hdm"></b>
  • <sup id="x0hdm"></sup>

    1. c number

      基本解釋c 數

      網絡釋義

      1)c number,c 數2)C*-algebra,C*數3)commutable number,C數4)C/C++ Math library,C/C++數學庫5)C-coefficient,C系數6)C*-algebras,C*-代數7)C~*-algebra,C*代數8)C~*-algebra,C*-代數9)C~*-bialgebra,C雙代數10)C-W function,C-W函數

      用法和例句

      A conclusion is drawn that the K0 groups of simple C*C*-algebras which possess tracial-NG properties have NG properties.

      研究C*-代數K0群的弱無孔性質、Riesz內插值性質,把這2種性質統稱為NG性質;并且引入具有跡-NG性質的C*-代數概念。

      One *-isomorphism of C*C*-algebras must be (completely) isometric map, but the inverse is not.

      C*-代數的*-同構一定是(完全)等距映射,反之不然。

      The paper also presents the answer to the lifting problems of the projections of the corresponding quotient C*C*-algebras.

      利用C*-代數I具有由投影組成的近似單位元的條件,給出了一類M(I)中以I作為理想的C*-子代數,證明每一個這樣C*-子代數的任何元素,均為弱擬對角化以及這些C*-子代數之間的關系,同時回答了相應商代數投影的提升問題。

      An introduction to the definition of the simple tracial limit of C~*-algebra is first made in this paper.

      引進了簡單跡極限的相關概念,簡單介紹了與C*代數SP性質密切相關的F性質,并且得到了非基本的單的具有SP性質的C*代數具有F性質。

      In this paper,we show that if A is a simple unital C~*-algebra with tracial stable rank one and SP property,then A has cancellation of projections.

      證明了如果A是單的有單位元的C*-代數滿足Tsr(A)=1,并且具有SP性質(對于A的任意非零可傳C-子代數B,B都包含一個非零的投影),則A具有投影的消去律。

      This paper studies the properties of a matrix-trace on C~*-algebra M_n(A) which is a positive linear mapping τ∶M_n(A)→A such that τ(u~*au)=τ(a)(a∈(M_n(A),)u∈U(M_n(A))) and τ(a~2)≤(τ(a))~2(a≥0), and obtains some inequalities.

      C*-代數Mn(A)上矩陣跡是一個正線性映射τ∶Mn(A)→A且滿足τ(u*au)=τ(a)(a∈Mn(A),u∈U(Mn(A)))及τ(a2)≤(τ(a))2(a≥0)。

      The α-Power Geometric Mean and Generalized Spectral Geometric Mean of Two Positive Definite Elements in a C~*-algebra;

      引入并研究了C*-代數中兩個正定元a與b的α-冪幾何平均gα(a,b)與廣義譜幾何平均Eα(a,b),且由此證明了一系列相關的性質和定理。

      Haar Measures on C~*-bialgebras;

      C雙代數上的Haar測度

      最新行業英語

      行業英語

      又大又粗又硬又爽又黄毛片_插B内射18免费视频_黄色网站在线视频_国产真人一级毛片在线视频
      1. <b id="x0hdm"></b>
    2. <sup id="x0hdm"></sup>