Let G be a graph,the binding number of G is defined as bind(G)=min|N_G(X)||X|:Ф≠XV(G),N_G(X)≠V(G)The relationship of binding numbers bind(G) to factional -factors of graphs was discussed,and some sufficient conditions of existence of fractional -factors with the graphs were given.
設G是一個簡單無向圖,G的聯結數定義為bind(G)=min|NG(X)||X|:Ф≠X V(G),NG(X)≠V(G)研究了圖的聯結數bind(G)與圖的分數[a,b]-因子之間的關系,給出了圖有分數[a,b]-因子的若干充分條件。
In this paper, we first introduce the fractional B-spline wavelets proposed by Blu and Unser, and discuss their properties and construction method.
本文首先介紹了分數B樣條小波的構成及其性質,基于分數B樣條小波一維離散Fourier變換公式,推導出了分數B樣條小波二維離散Fourier變換公式,從而實現了圖像分解和重構。
Copyright ? mingxiaow.com All Rights Reserved. 杭州優配網絡科技有限公司 版權所有 未經書面允許不得轉載、復制信息內容、建立鏡像
本網站內容僅供參考,請以各學校實際情況為主!內容侵權或錯誤投訴:841539661@qq.com 工信部備案號:浙ICP備20019715號